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On Runge-Kutta Methods for Parabolic 
Problems with Time-Dependent Coefficients 

By Ohannes A. Karakashian 

Abstract. Galerkin fully discrete approximations for parabolic equations with time-dependent 
coefficients are analyzed. The schemes are based on implicit Runge-Kutta methods, and are 
coupled with preconditioned iterative methods to approximately solve the resulting systems of 
linear equations. It is shown that for certain classes of Runge-Kutta methods, the fully 
discrete equations exhibit parallel features that can be exploited to reduce the final execution 
time to that of a low-order method. 

1. Introduction. In this paper we shall analyze fully discrete Galerkin type 
approximations to solutions of the following initial-boundary value problem: Let a 
be a bounded domain in RN with smooth boundary ag. A real-valued function u is 
sought, satisfying 

N 
a au~ 

| t 
= _L ( t)ua-= ax. i( ex t ) 

axj 
)-lo( x t )u in Q x(0, ] 

iii' ~~~~i,j=1 

u(x, t) = 0 on ag x0, t*], 
u(x,0) = u0(x) in Q; 

{ lA } is symmetric, uniformly positive definite, and l> 0 on Q x [0, t *]. In order to 
guarantee the convergence results below, we shall assume that lij, lo are sufficiently 
smooth, and uo is sufficiently smooth and compatible so that u has the required 
regularity. 

In [11], Crouzeix analyzed fully discrete approximations to u that are based on 
Runge-Kutta methods. His methods require, however, the solution of linear systems 
with different coefficient matrices at each time step. We shall call this the base 
scheme. An efficient procedure applied by Douglas, Dupont and Ewing [13] to a 
Crank-Nicolson discretization of a quasi-linear parabolic equation, consists in using 
preconditioned iterative methods with a preconditioner that does not change at 
every step, to approximately solve the underlying base scheme. In [5] Bramble and 
Sammon used similar iterative methods in their analysis of higher-order (3rd and 
4th) single-step fully discrete approximations. 

These iterative methods require the stability and consistency estimates to hold in a 
special norm induced by the preconditioning operator or equivalents thereof. We 
obtain stability and convergence results for the base scheme in such an appropriate 
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norm without requiring stronger regularity assumptions on u. We construct and 
analyze preconditioned iterative methods to approximately solve the linear systems 
that are efficient and preserve the order of convergence of the schemes. We 
specifically consider two such schemes. For the first, at every step, using extrapola- 
tion of previous values, we obtain an initial approximation which is within the global 
order of accuracy of the method, which is then refined an additional 0(k) by a 
preconditioned iterative method. This scheme requires O(ln k-') iterations per step, 
where k is the step size. 

Our second scheme requires the use of Runge-Kutta methods which are dissipa- 
tive in a certain sense. For these schemes, it can be shown that the average work per 
step is independent of k. This is achieved by using initial approximations which are 
within the local order of accuracy of the method. This scheme is similar to 
Algorithm 2 of Bramble and Sammon [5]. See also [13]. 

Furthermore, we show that for a specific class of Runge-Kutta methods, the 
system relating the intermediate values decouples, whereas all these values can be 
solved simultaneously, i.e., in parallel. One such family of methods is given by the 
(real) collocation methods whose corresponding rational functions have distinct real 
poles. In [4] it is shown that this family of (arbitrarily high-order) methods has the 
required A 0-stability property, provided the poles are chosen between 0 and -2. For 
such methods, the rate of convergence is q + 1, where q is the number of inter- 
mediate values. 

Two additional points worth mentioning are that under certain conditions the 
fully discrete approximations exhibit decay (as does u(t)); moreover, no use is made 
of inverse assumptions. 

The paper is organized as follows: In Section two we set the notation and list the 
spatial approximation results to be used. Section three is devoted to the description 
of the Runge-Kutta methods and their required properties. In Section four we prove 
stability and convergence of the base scheme. In Section five, we construct and 
analyze two variants of the base scheme obtained by approximately solving the 
linear systems by a preconditioned iterative method. We also show that if the 
rational function corresponding to the Runge-Kutta method has distinct poles, then 
both variants exhibit parallel features. 

2. Notation and Preliminaries. For m > 0 integer, let Hm denote the Sobolev space 
of real-valued functions defined on i2. For m = 0, let (.,. ) and 11 * 11 denote the inner 
product and norm on L2= Ho. Also, let Ho' denote the subspace of H' consisting 
of functions that vanish on au in the sense of trace. 

We assume that { L(t)}0 <I tt is a smooth family of selfadjoint, bounded opera- 
tors from H'+2 n Ho' onto H', for 1 > 0. Time derivatives L(j)(t) of L(t) are 
obtained by differentiating its coefficients with respect to t. For 0 < t < t*, let T(t): 
L2 H2 n Ho' be the solution operator of the problem Lo = f in 0, 0 = 0 on 4, 
with f in L2. { T(t)}0 <I tt is a smooth family of bounded operators from H' into 
HI 2 f2 Ho', with time derivatives T(j)(t). 

We shall assume that uo E HB for some p to be specified later, and that u' is 
compatible so that (cf. [14], [17]), for 0 < t < t*, u(j)(t) E H -2J and I uI (t)II, < 
c(j, l)IIu 0II, for 1 > 0, j > 0 such that 1 + 2jS It. 
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For r > 2, let { Sh } hI 0 denote a family of finite-dimensional subspaces of L2 and 
assume that there holds, for v E HI n Ho, 

(2.1) IIPov - v< ch'IlvII/, 2 < 14 r, 

where P0 is the L2-orthogonal projection operator onto Sh. We assume that there 
exists a seminorm 11 11, on Sh + (H2 n Ho) which is actually a norm on Sh. We 
assume that there exists a smooth family {Th(t)}: L2 -4 Sh of approximating 
operators with the following properties: 

(i) For each t E [0, t*], Th(t) is selfadjoint, positive semidefinite on L2 and 
positive definite on Sh. 

(ii) There exist constants c(j) independent of h such that 

(2.2) (I(Th(j)(t)-T(i)(t))f || + hlI(Th(j)(t)-T(i)(t))f |, < c(j)h'ilf11,-2, 

j> 0, 2 < I < r, f E H'2, 0 , t s t*. 
(iii) Denote the inverse of Th(t) on Sh by Lh(t). 

{ Lh(t)} is a smooth family of symmetric, positive definite operators on Sh with 

(2.3) C1I|4|II s 11)112 < C2(Lh(t)), 4), 0 < t < t", 4) E 

(2.4) J(LP)(t)4,0 p)| I <( i)I|0|,14 III, j > 0, 0 K t K t, 4), EE S. 

Galerkin methods giving rise to operators Th(t) satisfying the above assumptions 
include the standard Galerkin method, two methods of Nitsche and the Lagrange 
multiplier method of Babuska. For the verification of these properties, see [17]. 

The following two inequalities are direct consequences of (2.3) and (2.4) (cf. [3]), 

For 0 < t < t', let w(t) = PE(t)u(t) denote the "elliptic projection" of u(t), the 
solution of (1.1), where PE(t) denotes the operator Th(t)L(t): H2 t HE- Sh. With 
11(t) = w(t) -u(t), a suitable extension of Proposition 2.1 of [5] gives 

(2.7) L'(')(t) 1+ h~j7q(J)(t) j| < chILuOV,?2j, j > 0,2 t I < r, s, t E [0, t*. 

Note that the case j = 0 follows directly from (2.2). 
Let k = t */In * be the time step size with n * a positive integer. With Ln denoting 

Lh(t") = Lh(nk), 0 < n < ni, for c > 0 we define the family of norms on Sh 

(2.8) 11)I12 =11 (All2+ C|(kLn) 1/212, 4) E Sh. 

It follows from (2.6) that these norms are equivalent. For c1, c2 > 0, 

(2.9) d1(c1, c2)III0 ||C2,M< 111 Illcl,,n < d2(c1, c22)'1llI "iC2,M' 
0 < n m < n*. 

3. The Fully Discrete Approximations. In this paper, we shall consider Implicit 
Runge-Kutta methods, IRK for short. These methods are characterized by a set of 
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constants 

all ... alq T1 
*~~~~1 . 

aql ... aqqTq 

b, ... bq bq 

where the integer q > 1 is the number of intermediate stages. 
Given an approximation Uhl to u(nk), where u is the solution of (1.1), we define 

Uh1+ 1in the following way: 
q 

(3.1) Uh = Uh - k ? biLh(tn h)Uh i 
i=1 

where 
q 

(3.2) Uh= Uh - k ? aijLh(t")Uh ', i = 1,.. .,q, 
j=1 

and 

(3.3) Uh= (I + kXLh(O))1PO(I + kXL(O))u0. 

Here tC" = tC + k;T, j =1,..., q, and X is a positive constant to be appropriately 
chosen below. 

If the array A, (A)ij= aij, is invertible, as will be the case with all the IRK 
methods considered in this paper, then (3.1) can be written in the form 

(3.1') Uh +1 = (1 - bTA-le)Uh" + bTA-lUnh 
where b, e E Rq are given by b = (bi, b2 ...,bq) and e = (1, , ... .,1 ); and Lh E Yh 

(Sh) is given by UCh = (Uh,. Uk"") 
To every IRK method, there corresponds the rational function r(z) = 1 - 

zbT(I + zA)'le, representing the map yn+l = r(kX)yn obtained by applying the 
method to the ODE y' = -Xy. Often it is more convenient to characterize the 
stability and accuracy properties of the IRK method in terms of r(z). 

We shall consider IRK methods which yield (unconditionally) stable and accurate 
approximations to u. Specifically, we consider methods for which 

(3.4) |r(z) I<1l, z>~0 . 
Note that (3.4) implies that 
(3.5) 1 > r(z) > -1 + 8 for some 8 > 0 and all z > 0. 

It is well known that I1u(t)II is a decreasing function of t. It would be preferable 
then to use methods which transmit this property to the approximations. For such a 
purpose, the following property is crucial: 
(3.6) sup Ir(z)I<1. 

zky>O 

Note that since r(O) = 1, if (3.6) holds, then 8 > 0. 
We shall also consider IRK methods possessing the so-called Algebraic Stability 

property (cf. [7], [9], [12]) 

(3.7) \ aab, + ajibj - bibj positive semidefinite. 
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This concept of stability is not only stronger than that of (3.4) but also encom- 
passes that of B-stability (cf. [12]). 

We shall require these methods to satisfy the following two consistency condi- 
tions: Let v >? 1 and p > 2 be the largest integers for which there hold 

(3.8) bTTle = 1 0 < 1< v -1, 

(3.9) AT'e = 1 e 0 < 1/ 2 p-2 

where T is the diagonal matrix T = diag{ T1,... , TO 
In general, v < 2q and p < q + 1. It also follows from (3.8) and (3.9) that 

(3.10) e-Z - r(z) = O(zc), a > 2 for lz small. 

The following are examples of IRK methods: 
(i) Backward Euler 

111 
1 ' v= 1, p=2 

satisfies (3.7), (3.6) and (3.5) with b = 1. 
(ii) Crank-Nicolson 

1/2 1/2, v 
=2, p=2 

1 

satisfies (3.7), (3.5) (with 8 = 0) but not (3.6). 
(iii) Calahan 

1 -2(3 / 1-a, /=-JI+ ); v=3, p=2 

1/2 1/2 

satisfies (3.7) and (3.6). 
In the sequel, we shall prove O(kmin( 'P) + h r) rate of convergence estimates for 

the approximations generated by (3.1)-(3.3) with IRK methods satisfying (3.4), (3.8) 
and (3.9). We would thus like to work with methods for which p attains its upper 
bound q + 1. In this respect, the class of (real) Implicit Runge-Kutta Collocation 
methods (IRKC) is particularly interesting (cf., e.g., [4]). Arbitrarily high-order 
(v = p > 2) and stable (in the sense of (3.6)) IRKC methods can be generated as 
follows: For q > I and {Y1}7. 1 real, let 

q q 
Q(z)=J71(I+y z)= Esjzi 

i-i j=O 

where { sj }10 are the " symmetric polynomials" in Y1, Y2, Yqs 

S0= 1, si= Yi, Til 
il< <ij 

We next define the polynomial N(t) = ? 2%(-1) Js tq-j/(q - j)!, and let 
q 

(3.11) P(z) = E (-1)q JNj)(1)zq-j, r(z) = P(z)/Q(z). 
j=O 
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Further, assume that the following holds, 

(3.12) 1 N(t) dt = 0. 

We have 

LEMMA 3.1 [4]. For any q > 1, let r(z) be given by (3.11) and suppose that (3.12) 
holds. Then 

(i) If y, > 0, i = 1, .. . , q, then N(t) has q distinct positive roots T1,. . I, Tq 
(ii) The IRKC method given by A = TVZV-1, bTV= eTZ, where Z= 

diagt 1, ....., 1/q} and V is the Vandermonde matrix V1j = TIJ1, satisfies (3.8) and 
(3.9) with v = p = q + 1. 

(iii) If y. > 2 then (3.4) holds, and (3.6) holds for q > 3. For q = 1 or q = 2, (3.6) 
holds provided y, > 4, i = 1, .. . , q. In fact, the coefficients of P(z) and Q(z) satisfy 

I1iJ < 1 for i =1...,q, q >, 1 if yj > 2 and 
Qi2 

(3.13) IPq1 < 1 forq > 3 if y, 2and 

Pq1 <1 forq= 1or2 if y,> >. E 
Qq 

If Y1, ... I, yq are all chosen equal to a common value y, then condition (3.12) 
becomes equivalent to having y satisfy Li(1/y) = 0, where Li(x) is the Laguerre 
polynomial of index 1 and degree q. We thus retrieve as a special case a class of 
"restricted" rational functions used in [2] and [15], among others. 

It is also known that for IRKC methods, Y1, . . ., yq are the eigenvalues of A. Thus, 
if the y,'s are distinct (in addition to satisfying the conditions of stability and 
consistency), then we can write A = S -1AS, where A = diagt y1,j... .I yq }. In Section 
5 we shall show that in this case the equations (3.2) decouple, leading to q 
independent equations that may be handled simultaneously. 

We end this section by exhibiting a family of 2-stage third-order IRKC methods 
(v = p = 3). Let Y1, Y2 be two free parameters. The relation (3.12) in this case 
reduces to 

(3.14) 6- 2(71 + 72) + YlY2 = 0 

and gives v = p = 3. Furthermore, a straightforward computation gives T = m1 + 72 

2 ~~2 + 2 1i 
+- 1/72 + y722 12 = 71 + Y7- /l26 + 722 

A [T1 T2- 2 T1 - 1T2T2 b J1 [- ?2J 

2 - 1 L 12 T22 -1T2 + 12T2 - L1+ 1 _f 

It can be shown that for Y ', Y2> 2, this family of methods satisfies (3.7), and (3.6) 
if, in addition, Y1, Y2> 2. In a similar manner, arbitrarily high-order (v = p = q + 1) 
IRKC methods can be constructed satisfying (3.6). However, it is known that for 
v > 2, (3.7)-(3.9) imply that v = 2q - 1 or 2q (cf., e.g., Theorem 1 in [6]). Thus, for 
this class of methods, (3.7) cannot hold for q > 3. 



RUNGE-KUTTA METHODS FOR PARABOLIC PROBLEMS 83 

4. Stability and Convergence of the Base Scheme. Letting Yh: 5'h -5 Yh denote 
the operator diag{ Lh l,..., L. ' h}, with Lh" Lh(t ") we can write (3.2) and (3.1) 
as 

(4.1) (I + kA ,,hn ) Uh= eU 

(4.2) Uh"+' - n~ = {I- kbTY~h(I + kAhn)le}U.h 

Here AS* is understood in the sense of composition of operators on 5"h, with A 
viewed as an operator on (L2)y. Similarly, we define Yh = diag{ Ln,..., Ln}. 
Let us also mention that, in the sequel, will also denote the norm 

{f II?I 
2 + + II>qII2)1/2, with (4j,... .,q) E5- Yh' as well as the corresponding 

operator norm. 
We now briefly describe the results of this section. In Proposition 4.1, we establish 

the invertibility of the operator (I + kAYhn) and obtain estimates on norms of 
various associated operators, provided the eigenvalues of A satisfy Re X > 0 and 
X # 0. This condition will be assumed throughout the paper; in fact, we shall assume 
in Section 5 that the eigenvalues of A are positive, real. The proof is a simplification 
of that of Crouzeix. We give it here for the sake of completeness. In Theorem 4.1, we 
obtain a stability estimate for the operator Rn in the III 11ll-norm, for IRK methods 
satisfying (3.4) or (3.6). In Theorem 4.2, we obtain an improved stability estimate for 
methods satisfying a stronger version of (3.7). In Theorem 4.3, we estimate the local 
truncation error, again in the III 11ll-norm, for methods satisfying (3.8) and (3.9). 
These results, when combined, give the convergence of the approximations generated 
by the base scheme (3.1)-(3.3). 

PROPOSITION 4.1. Suppose the eigenvalues of A satisfy Re X > 0 and X # 0. Then 
(i) I + kA Yh is invertible and the following estimate holds: 

(4.3) |(kYh ) 0(I + kAYhn) 1 c, 0 < 0 < 1, 

where (Yhf)o = diag{(Ln)0,. . (L. ) . 

(ii) There exists a ko > 0 such that for k ko, I + kAYhn is invertible and the 
following estimate holds: 

(4.4) (I + kAYPh)'1 + 1 (kYhn)C2(I + kAYn)' 1 . 

Proof. (i) Let S-'AS be the Jordan decomposition of A, with A lower triangular; 
then I + kAYhn = S-1(I + kAYhn)S. Let A, be the iS X is block of A correspond- 
ing to the eigenvalue Xs, and consider the diagonal operator ?hns = diag{ Lnh..., Ln } 

on (Sh)ix. Now I + kAs Yns is invertible since Ln is symmetric, positive definite, hs~~~~~~~~ 
and Re X > 0. It follows that I + kAYhn is invertible. Moreover, 

(4.5) ((I + 
kAsYs)')ii = (-kLn)' i(I + kXsL ) ' 

i', 1 <K j i < iS. 

Using a spectral argument, it follows from (4.5), since Re Xs > 0 and Xs # 0, that 
for 0 < 0 < 1, II(kYhns)0(I + kAs5Yns)-1II < c. This in turn gives (4.3). 

(ii) We write I + kAYPn = (I + kAYhn)(I - E), where 

(4.6) E = ( I + kA.Yn ) - kA ( Yhn- Zhn 
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Letting h 7 =( )- = diag { Th, ...,T }, we have 

(yh?)1(I + kA-h )(ght)1/ = (I + kAy9n7)(I -(yh)112 )1/2) 

It follows from (2.5) and (4.3) with 9 = 1/2 that 

(4.7) 11(yhn)112 E (.5-h)1/211 -< ck. 

Hence, I + kAf/'hn is invertible if ck < 1. Now, as in the above, 

||(kYhn )1/2(I + kAjh)-1 
(4.8) =1 (Yn)1/2E($7(n)1/2V(kjhn)1/2(I + 

kAyhn)|l 

from (4.7) and (4.3) with 6 = 1/2. Now note that from (4.8), 11(kyh7)1'2kII < 

cII(I + kA%4h)OII for all 4 E8 ?h. Thus, from (2.6), 

11II2 = ((I + kA_ n)o, -) k(A - Phn, ) 

< I|(I + kAYPn )sbII 1I011 + cjj(k7hn )1/20 112 

Using the arithmetic-geometric mean inequality, we get from the above that 1011 < 
cII(I + kAYh)4.II, or 11(I + kA.!Phn)4'II < cjjj, with 4 E- Yh. This together with 
(4.8) gives (4.4). 0 

THEOREM 4.1. Suppose that the eigenvalues of A satisfy Re X > 0, X # 0 and that 
(3.4) holds. Let 'n,'n+l? ,n+1 in Sh be given by tn+l = gn~n + 4n+?1. Then there 
exists a constant c such that for any c * > 0, 

1,1+1 ll2* + < (1 + ek ) III 
n 

1112 *. III IllC c*n+1 

(4.9) n ][ n] n,111 n 1112 
- I - r(kLh)] [I + c*kLh] ,n,') + ck 1IIIfi|II*.n+l 

where 8 is as in (3.5). Moreover, if (3.6) holds and the constant c(1) in (2.5) is 
sufficiently small, then c < 0. 

Proof. We let rhn = r(kLh) and note that rhn = I - kbTYhn(I + kA1hn)-le. We 
have 

(4.10) I?12 rhnI 
n 

112 + 211Mh' _ rhn|IIII|nII Ikn+l| + 21(4n+1,+ n+l?) . 

From (2.3), (3.4) and (3.10) it follows that there exists c1 > 0, ko > 0 sufficiently 
small such that 

(4.11) 11r11= max Ir(kX)I<1-clk, 0<k<ke; 

moreover, c1 > 0 if (3.6) holds. This implies that I + r,'n and I - rhn are nonnegative 
definite. Hence, using (3.5) and (4.11), 

|r|nh 112 ((rn)2n =nI -([I + r111] [I- rn] /2tn, [I rh- ] 
1 

) 

(4.12) 1tnll -112 _ II rhn)nn,1 n 

< (1 2clk jgn 112 _ 
8([_ rfln,&n ) 
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Now with E as in (4.6), after lengthy computations, 

(4.13) .~gi - rhn = bT[(I + kAy)1(ky)1/21 [(-.hn k.n)1/2( n - 
h h 

[ n 
(n)1/2E(.n)1/2] (k'n)1/2(I + 

Hence, from (2.5), (4.3), and (4.7), for k sufficiently small, 

(4.14) 1 - rh 11 + L- h C2k, c2 = C C(1) 

Using this and (4.12) in (4.10), we get for any ? > 0, 

(1 - c~k - ek)Ikjn+?1I S (1 - 2 _ k + C2k)lln 112 _ 
- 

+ c'k - 11 np+ 1 112. 

Now letting f= (kLn)'/2ti i = n, n + 1, and 4,n+l = (kLn)11/24n+, we get exactly 
as before, 

(1- c2k - ek)II '|| < (1 - 2c k + c2k)tt|tn 

- - [ + nn1kn 14||kl?n+1112; 

(4.9) now follows from the last two inequalities and (2.5). Also, if 8 > 0 and c2 (i.e., 
c(1)) is small, then it is the case that c < 0. 0 

The constant c in (4.9) is negative provided (3.6) holds and Lh(t) changes slowly 
with t. We shall show that this latter requirement can be waived in the case of 
methods that satisfy a stronger stability condition and are dissipative in the sense 
that 

(4.15) Ir(oo) |11 - bTA'leI < 1. 
THEOREM 4.2. Suppose that the eigenvalues of A satisfy Re X > 0, X * 0 and that 

(3.7) and (4.15) hold. Suppose in addition that b, > 0, i = 1,... , q. Let g n+?1 gn, 

4/1?1 in Sh satisfy 'n+l = gntn + 4n+l. Then there exist constants c*, cl > O. c < O 

such that 

(4.16) jj~n?1 1112 (1 + Ok )ill || 111 | k ( Ln n) ) + ck -I`III| t + 1112 
Proof. For simplicity we shall assume that 4,fl = 0. Let { 9 } 1_ in Sh be given 

by 
q 

(4.17) nti -~n k E a L jL~if i = 1, .,q. 
j=1 

Then 
q 

(4.18) g'n+1 = _ k E b1Ln i4. 
i=l 

Now from (4.17) and (4.18), 
q q 

I~,1?1II2 = lt~ 12 - 2k bi Lh"e4V) + k2 S bibj(Lh.p'. Lh 'j4) 
i=1 i,,j=l 

2 q q 

lltn 11 
_ 

2k i, bj(o, Lnj= 
- 

1k2 1 mij(L" i4?, L' i, 
i~~~l ~~i,j-l 
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where mi1 = a11bi + a - b bj. Letting Lhs', J = EdI=cj X,, where {XIL is an 
L2-orthonormal basis for Sh, we get 

q d q 

E m11(Lh +', LI 'kj') - 
M 
iJcIcJc > 0. 

iJ==1 1=1 i,j=1 

Hence, 
q 

(4.19) 1 
- 2k , bi (Lh ' j'p) j 

i=l 

Also, from (4.17) and (4.18) with a -I = (A-')IJ, 
q 

( "& +1&; 1)= ( L;n n+1)-k 3 b, ( L~n "sb, L7,g + ') 
i=l 

= r + En nnl n n n n+) 
- ,j=1 

Thus, for any ? > 0, 
q 

{1 - ~Ir(o) | - ?} (L*;roL, ?nIn r(no) I(Lnj g ,n) + cl 
*=1 

Now it follows from (2.5) that (Lnhki 41) < (1 + ck)(Lnh "s, 41). Using this together 
with (4.19) and the fact that bi > 0, we get 

{ 1 - | r(oo)I - 
E}(L 

nn 
Dn) 

< I |r(ox)|(L nn n) + c (-k)-{ 1 k IIn 112 n+1 112 

Since Ir(oo)l < 1, we can choose ? > 0 small enough so that for positive constants 
C1, C2, C3 with C3 > C2 + C1 we have 

(4.20)~~ 1n+1 112 + C k(L nrn+1,~+1) 
(4.20) + 

j ?I + (C2 + cl)k(L 
, -) clk(Lh- 

Using inequalities (2.3) and (L n+ ln+ l n+) < (1 + ck)(L Lnn+ l gn+l ), (4.16) fol- 
lows from (4.20). C1 

Remark 4.1. It follows from (4.9) or (4.16) that 111Uhn11c*c, n (1 + ek) IIIUh0II|c*,o. 
Now if c is negative, this could be interpreted as decay. For "long time" calcula- 
tions, the dependence on t* of the constants in (2.4) and (2.3) plays an important 
role; if these constants grow with t*, then k must be chosen accordingly small in 
order to have c < 0. 

We have assumed above that u? is sufficiently smooth and compatible so that 
u(t) is smooth for 0 < t < t*. Now since some of the constants Ti may be greater 
than 1, we shall henceforth assume that u(t) is smooth for 0 < t < t** = t* + 
k max{0, max,( T, - 1)}. 

THEOREM 4.3. Suppose that the eigenvalues of A satisfy Re X > 0, X 0 0, and that 
(3.8) and (3.9) hold. Suppose u? is sufficiently smooth and compatible so that 

uP(t) E H r n Ho' u(a)(t) E H2 fl Ho', u(G ?'(t) E L2, 0 < t < t**, and that a con- 
stant c, exists such that 

(4.21) |u|(j)(t) 11m < cO u0IL,, m, j > O. 2j + m < ,u, 0 < t < t 
where ,u = max{ r + 2,2(a + 1)) and a = min{ p, v }. 
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Then, for any c* > 0, there exists c = c(c*) such that 

(4.22) jj - pnWn-Wn+ llC* n+l < ckfk? + kG-1h2 + kg-l/2h + hr}0u IIL. 

Proof. With WW = ... , w' ")T w - w(tn"), and Fn 8 th given by 

(4.23) (I + kAhn )Fn = To -AT?-}e( k ) W(1 ) (tn 

we write for some En in Yh' 

(4.24) (I + kA$ )(Wn + Fn + AF ) = ew 

We let go, E ?n denote the diagonal operators with entries Po. PEA = 

Th(tt""1)L(tni) and L(tni), i = 1, ... , q, respectively. With Un = (un",..., un q)T 
and using h'Wn = = -S0Jj, from (4.24) we get 

(4.25) (I + kA~Y'hn)En = -(I + kA r,)F- + ewn - Wn + kA?7A(J 
= -(I + kAfn)Fn + {ewn - Wn + kAWn} + kA(goAUn -Wn) 

With z(t) = w(t) - Pou(t), and 9 denoting the diagonal matrix satisfying e = 

{ T?/a - ATG-l}e, from (3.9) we get 

(4.26) -ewn - kAWn = kG )ew(G)(tn) + 4, 
Wt (a -i)! 

where for i = 1, . . . , q, and assuming for simplicity that a > 2, 

-k a ez(G)tn\ + 1 ft'" (1ni - s~l1z(G)(s) ds 

(In)k = (a- 1)tn! ( 1 t k t ) ? 2z (?) () 

+ (a k 2 t ni a)1j (tn ( 5 - 

- 0( 0"l! -i~t sGo(Gn)(s)?-P ds l(sd 

a! 1t=1 

- k t~ q p0(ta")(s - dlp (?)( s 

Using this and (4.23) in (4.25), we get 

(4 .27) Ehn = _(I + kA.#hn )'Z1n + (I + kA',n7)-l'kA(?oUn- Wn'/7). 

Now, using the identity 

(4.28) kA E'n (I + kAYhn' = I-(I + kA-' = (I + 1kA 

from (4.24) we get 

(4.29) 91'w" - Wn +1 = Wn - Wn+1 + bTA-l(Wn - eWn) + bTA-lFn + bTA-lEn. 

Expanding W" in a Taylor series at t = t", 

(4.30) bTAlIi- n - ewn) = bTAlTI le()! W'/(tn) + bTA lZ2 
1=0 ~ ~ (1+ ) 
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where for i =1,. . ., q 

(Z2n), = o i-{k _i) G ( 3(tn) + apea (t - s)l(G)(s) ds 

+ Jth (tn' _ S )U(?+1)(s) ds}. 

From (3.8) and (3.9) we have bTA-lTl+le = 1, for 0<l min{p-2,v-1). 
Using this in (4.30), from (4.29) we get 

(4.n3 Wn = W"+l ! S kw()(tn) - w +l + bTA -{ T ee w(0)(tn) + Ftn} 

+ bTAlEn + bA-lZ' 

Using (4.28) and (4.23), we get 

bTA-1(T k ew(6)(tn) + Pn} 

- bTqTa- let k W(0)(tn) + bTA-(I + kA n 

(4.32) (ab- 1)! 
k0 

XkA2'nge W(a)(n) X Ah Vl ,_l ( t) 

--n+ Mn 

Note that from (3.8), bTTln-le = 1/a. Hence, M' = (kG/a!)w(O)(tn). Using this 
and (4.32) in (4.31), we get 

(4.33) h - 41 = (f !w()(t ) ) - + AF) + M2 T + bTA 2-lZ. 

We now estimate the terms in (4.33). From (4.27), and using (4.4), 

(4.34) jlbTA-lA nh1 + 11(kL )l/2bTA-tn 1 C{112nj1 + k||i - JT 11 }. 

Now from (2.1) and (2.7), 

IIS0U/' - w;t"| < cmax IlPounJ - 

( max {||POu7 '- _ || + ||.'t||} 6 chrItUOIr+2, 

(4.36) Z;t I1 <, c{ kh2 + k0+1 }Iu?II2(+l) 

We have, by using -^fph E - f nand (4.28), 

(4.37) =( kT bTA-{[I - (I + kA.%hn) 1 | [ew(")(t) Ee- 

+ k(I + kA.hn)-lA 3%Yneu(Gf)(tn)} 

Using llS'Peu(?)( t)ll < cIjju 12(o+1) and (4.4) in (4.37), we get 

|| M' 
n + 1I(kLn) 1/2 M'n1 

(4.38) < cka+111U0112(a+l) + ck"max {II w(v)(tn) - p'nJu(a)(tn) II 
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Now from 

W( (ta ) - n"(o)(tn) = W(a)(tn) - U(o)(tn) +(T" n-aTn)Ln u(o)( 

and using (2.2) and (2.7), we get 

(4.39) jjW( )(tn)-PE iU(o)(tn) jj < ch2juO 112(0+l) 

Similarly, from (2.2), (2.4) and (2.7), 

jj(kL'j)1/N[W(a)(tn) - PEnju(a)(tn)] 1 

(4.40) < ckl/2 II W()(tn) - U(o)(tn) 11, + II(Tn" - Thn i)LnJiU(a)(tn) IlI) 

< ck1/2h|| UO 112(+ 1). 

Using (4.39) and (4.40) in (4.38), we get 

(4.41) IIMR'1 + I(kLh)1"2M2I < c{ka+l + ka+l/2h + kh2 } |u? 112(0+ 1) 

It remains to estimate the first and last terms in (4.33). These are similar, so only 
the first term will be considered. We have 

ak' 
p - W(l)(tn) - Wn+ 

I-0 

= o !{( k G71 (0)(tn) - af 't (tn+1 - s)-171(a)(S) dS 

_J:w'+l (tn+ - s)_u(o(+)(s) ds} 

Now from (2.7) it follows that 

(4.42) 11 p || < ck { k?lh2 + k?}||u? I2(a+1). 

To estimate 11(kLn)112pII, we write with PEn = ThnLn, 
1 

(-)(tn) +1 (t+l -s)Glq1()(s) ds 

+ ka [I_ -pn] U(,)(tn) -_ fn+1 (tn+l _ S) [I - 
Pn] u(`)(s) ds} 

+ o! ({kGPEu(G)(tn) - af'' (tn+l - S)0-lP~n()(S) dS 

P1 + P2. 
From (2.3), (2.4) and the Cauchy-Schwarz inequality, 

(L CIlP12 _+ CIIP11121lPl _+ CIP1112+ ( (4.43) (Lpp 
I I+ CI 

+ c(LP2, P2) 

I cILp2 II (II PII + I1 P1I) 
Now using (2.2) and (2.7) we get IlP,11 + hIjpjIji < ckoh2I1uOII2(G+l). Also, using 

h , = POL", we have IIL p2II < ckoIjuOII2(o+ 1). Hence, 

(4.44) ||(kLn l/2P || < ck { k? + k?-1/2h }u?I 11 2(+) 

(4.22) now follows from (4.33)-(4.36), (4.38), (4.41)-(4.44) and (2.9). 0 
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Remark 4.2. Using Young's inequality, we get ka-1h2 + k- 1/2h < c{k( + h } 
under the mild restriction 2a > r. The above inequality also follows from h2 < ck, 
for any constant c. Alternatively, we could have obtained the bound k{Vk + h } 
directly at the price of imposing slightly higher regularity on uO. 

Henceforth, we shall let of= f(k, h, a, r) = ka + k 'h2 + k -1/2h + hr. We 
have 

THEOREM 4.4. Let { Uh, }%> be given by (3.1)-(3.3). Then under the conditions of 
Theorem 4.1, or Theorem 4.2 and Theorem 4.3, there exists a constant c = c(c*) such 
that 

(4.45) max IhUh c - Wjc*,n < cIu? lIIu, 
O <n <n* 

(4.46) max * II Uh u | cluIu0 II, 

where IL = max{r + 2,2(a + 1)), a = min{p, v} and c* is as in Theorem 4.1 or 
Theorem 4.2. 

Proof. From (4.22) and (4.9) or (4.16), 

IIIUh+1 - s n (1 + ck)IIIUh - w'C*jn + ckG I|u oIIu 

0 < n < n*-1 
A standard technique then yields 

2 ~~~n-i 
- w II*,I - 4 (1 + c)IIIUhk -h * + ck off (1 + 21k) 

1=0 

Note that 
n-1 / n, e= 
n, (1+ k)l (n < O. 
1=0 Oc; 0 

It remains thus to estimate hJUh0 - w0III,*,o. But from (3.3), (I + kJL5)(UhO - w?) 
= P0u0 - w0. Since X > 0, (2.1), (2.7), and (4.3) give at once I11Uh - w0IIIc*o < 

ch riluoli r. [1 
Remark 4.3. The dependence on t* of the constant c in (4.45) and (4.46) can be 

described in terms of the dependence on t* of the constants in (2.2)-(2.9) and cA in 
(4.21), and the sign of c. If c > 0, then c may depend on t* exponentially, regardless 
of other factors. If, on the other hand, c < 0 and the above constants are indepen- 
dent of t*, then c is also independent of t*. 

5. Preconditioned Iterative Methods. The base scheme (3.1)-(3.3) involves solving 
at each time step a linear system of equations with coefficient matrix I + kA2n 

(with respect to some basis for Sh). Two major difficulties are immediately revealed. 
Since A is in general a full matrix (e.g., this is the case if v = p), I + kAShn is, in 
general, a full q by q block matrix. The second difficulty stems from the fact that 
shn depends on n, and hence requires new factorizations at each time step. 

In this section, we shall describe two variants of the base scheme, which will 
substantially alleviate these difficulties, and at the same time, will preserve the 
stability and accuracy of the base scheme. Furthermore, we shall show that if the 
eigenvalues of A are real, positive, and distinct, then the q intermediate stages 
decouple, i.e., they can be solved independently and simultaneously. 
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We begin by describing a class of Preconditioned Iterative Methods (or PIM) 
designed to avoid new matrix factorizations at each time step. Such iterative 
methods were used in the context of time stepping for parabolic problems by 
Douglas, Dupont and Ewing [13], and Bramble and Sammon [5]. 

Let V' be a finite-dimensional Hilbert space with inner product (., ) and norm 
11 1,= (,. ),2. Suppose M, MO are symmetric positive definite operators on OK, 

and are equivalent in the sense that for constants c2 > cl > 0, 

(5.1) cl(MO01,)e ( M+,?) ex C2(MOI,)X V4E #- 

Suppose also that we want to solve the linear system Mx = b, b E X#, and that 
solving the linear system Moy = z is relatively inexpensive. Given x(?) GE y, these 
PIMs (with MO as the preconditioner) generate approximations {x( )}J 0 to x. 
These iterative methods possess the following properties (cf. [1], [5]). 

(1) Given {x(i)}J o, calculating x(-+1) involves only evaluating MO, Moo, 
4 E yK, computing inner products (MO, 0)fv (Moo4, 4p) and solving linear systems 

Moo = 4, 4, E Xe. 
(2) There is a smooth decreasing function p: (0, 1] -- [0, 1) with p(l) = 0, and 

such that (with c1, c2 as in (5.1)), 

(5.2) IIM172(X(j) - X) e c[p(ci/c2)IIMd1/2(x(0) - X) K1 
A particularly efficient PIM is the preconditioned conjugate-gradient method, 

with p(s) = (1 - W)/(1 + W). Also, it does not require knowledge of the con- 
stants cl and c2. 

In the sequel, we shall let of= Sh and equip it with the L2-norm. 
Since '?Phn contains operators Lh(-) evaluated at different time levels, we shall 

consider the splitting I + kAffh" - kA(fhn/' - .4) and use it to define the iteration 

(5.3) (I + kAppa) )VI"1 = eUhn + kA (Yh -4Shn) V/", I ,,...;n Eyh'^ 

We shall refer to this as the "outer iteration". The following result concerns the 
application of (5.3) to the system 

(5.4) (I + kA. J'h)V = eUhn. 

PROPOSITION 5.1. Let VI E 5Y'h be the solution of (5.4) and let { VI" ,I> o be given 
by (5.3). Then for any c* > 0, 

(5.5) ill - V7"I_.o < c(c*)klllvn- c*O, I I 0. 

Proof. From (I + kA Yhn(X V - VI" ) = kA(Yh,^ - Y4'h)(V" - V,"), written as 

V`- VI" 1 = (I + kAYh'n)1(k )hn 2A (h n)h72( Sn_ n)(yn)l/2 

x k~,)172(Vn _-n) x ( ke?^ ) 2h A A 

(5.5) follows by using (2.5), (4.3) and (2.9). 0 
In what follows, we shall be able to restrict the number of outer iterations to one 

for n > a - 1. For n < a - 1, we need not iterate more than a times. 
We shall approximate V/" 1 in (5.3) using a PIM, which shall be referred to as the 

"inner iteration". Let S1AS be the Jordan decomposition of A, with A lower 
triangular. With VFril an approximation to Vn, we write (5.3) in the more convenient 
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form (redefining V,+ 1) 

(I + 
kA.Fhn )SVn~1 = SeU + kAS(Yhn- 2?hn)V,", /=n0,1. 

I + kX1Ln 

(5.6) I + kAth = k01Lh I + kX2 h 

kO q-iLh I + klqLh 

where for q > 1, 0i = 0 or 1. With 00 = 0. we write (5.6) as 

(I + kXiLn)(SVn )i = (SeUn + kAS(Yhn- -!h)Vn jl 

-k ,~Lh S1+l)- i=L1 ... ., q. 

For X > 0 fixed, I + kXL? and I + kX Ln are symmetric, positive definite and 
equivalent in the sense of (5.1). With an initial guess V/+ , we apply j1+1 iterations of 
the PIM recursively for each i, i = 1,... , q. We obtain 

(5.8) j+1 - Vj+1jjj1 < 13+1IIIV/l - v/|IlAo, #1+1 < 1. 

We now make the following simple but important observation: If the eigenvalues 
of A are distinct, then 0i = 0, i = 1,..., q - 1, thus the matrix I + kALn becomes 
diagonal and (5.7) decouples into q independent linear systems, which can be 
handled simultaneously, or in "parallel", on a computer with at least q independent 
processors. An equally important fact is that we know how to construct IRK 
methods having the required properties; specifically, the (real) IRKC methods 
described in Section 3. These methods are of arbitrarily high, optimal order (optimal 
in the sense that v = p = q + 1) and stable in the sense of (3.6) (or (3.7) for q = 2), 
and with eigenvalues of A that are real, positive, and distinct. A reasonable choice 
for X would then be q1Ejq- A,. 

We next analyze a procedure that consists of a cycle of one outer iteration 
followed by a certain number of inner iterations. 

PROPOSITION 5.2. Suppose the eigenvalues of A a real and positive. Let V/nj be an 
approximation to Vn, the solution of (5.4), and let V/"+1/ be an approximation to 
VI+I1, the solution of (5.6), obtained by applying j,1+ iterations of the PIM with 
I + kX Lo as preconditioner, A > 0, and initial guess V,+ = VI" . Then 

(5.9) lV" - V/(~lI+llixo {ck + #1,+1})IIIV- VV n 1||ll0. 
Proof. From (5.5), (5.8) and since Vj"+,0 = V"" - , 

n1 n j+1 
III_, 

n InIIII, n j+ 
I_, |V +1 < I V+ 1 +| 1 -+ 1+1 

< ck||V on _ Vn"'jllll_0o + 13,+1lllVn+ 1 - Vn"jlll|>. 

Also, 

I V/+ 1 - Vi ,jIl J111J v - Vi1 IIJ0 + llI v - Vjlj IIIX o 

< (ck + 1) IIlI - V "lIllm. 

Using this inequality in the previous one, we get (5.9). 0 
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For simplicity, we shall take P = f, = -, We are now in a position to 
define and analyze the first variant of the base scheme. Let Uh be given by (3.3) and 
assume { U%}>) is given. We define the initial approximation Vo"l to V", the 
solution (5.4), by 

m 

(5.10) (VO'0)i= YJi U-J m =min{a-1,n},i=1,...,q, 
j=O 

where the coefficients ym are given by 

( jH7LT~m0;i,,j(l + TO j) 
(5.11) 0"' = (1) j!(m-j)! i = 

y,? =q1, i=1,...,Q. 

With VJ'7 ? as initial guess, we obtain an approximation V"nJa-mJ to VI by applying 
the outer-inner cycle a - m times with f3n = ck (note that a - m = 1 for n > a - 1). 
We then let (along (3.1')) 

(5.12) = (1 - bTAle)Uhn + bTAlVO-jm 

We have 

THEOREM 5.1. Suppose the conditions of Theorem 4.3 are satisfied, (3.4) holds and 
that the eigenvalues of A are real positive. Let the sequence { Uh }In= of fully discrete 
approximations be generated by the first variant of the base scheme. Then, for some 
constant c > 0, 

(5.13) max IIIUh - Wllc*,n < c4'fu f, 

(5.14) max I|Uh' - uhI | cg'IIU 0i, 
0 < n < n 

where c* is as in Theorem 4.1 and 6' as in Theorem 4.4. 

Proof. With Pj = wi - U', we consider the error equation 

( 5 .15 ) t n + 1 = n n+1 - hW n + hns n + MnUn -U l 

Now sincefn = ck, 

(5.16) ||| h~ U hII c*n+l = IIIbTAl(VF _ Vnijsn) IIL,?1l 
< ckk " IIVI - v0 'fc*,n+l? 

from (5.9), (5.12) and (2.9). Now with W", F", '" as in the proof of Theorem 4.3, 
letting rt1 = diag{ymJ,ym,... y'} 

m 

V- V/7 ? = V" - E rjjteU^f-J 
j=j 

= ien-j -(I + kA.Fn ~len + PI + PIl + aln _ErymeWn7-j 
J =0 J= 

From (2.7) and (5.11) it follows that 

(5.17) W" r-Iewn|| < ckm+l?uoj 2(fl+2), m = 0, , 
j = O . C. *,n2+1 
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Now as in the proof of Theorem 4.3, it can be shown that 

(5.18) IIIFn + - 1 c{ka + khr}I|uoII|. 

Using (4.4), (5.17), (5.18) and (2.9), we get 
in 

V| - 
VOn'?IIlc*,n+1 < C Ej -j Ilc*.n-j + ck{ km + hr}I 11 uO IIy. 

j=O 

Using this and (5.16) in (5.15) together with (4.9) and (4.22), we get for 0 < n < n*, 

III l*n "+l < (1 + ck)IIID'lIII? n+ ck ? Ilk'n-IIl* 'n-j + ck 2A 
J=1 

(5.13), and then (5.14), follow at once. a 

In contrast to Theorem 4.4, the constant c in (5.13) may depend (exponentially) 
on t* (cf. Remark 4.3). Also, following each outer iteration, the inner iterations must 
produce an 0(k) refinement, which in view of (5.2) will require O(ln k1-) iterations 
per step. We shall next analyze a second variant of the base scheme which is superior 
in both respects. It is similar to Algorithm 2 of Bramble and Sammon [5]. This 
algorithm requires the IRK methods to be dissipative in the sense of (3.6) or as in 
Theorem 4.2, and necessitates the use of initial approximations more accurate than 
(5.10), (5.11). However, under these conditions, we will show that we need to take 
Al ctnK2a, for some 0 < c < 1, thus requiring (as in [5]) an average number of inner 
iterations per step that is independent of k. Also, the dependence on t* of the error 
constant is similar to that in Theorem 4.4. 

For the second variant of the base scheme, with Uho given by (3.3), we generate 
Uh,..., Uh1 using the first variant. For n > a + 2, we shall need to use improved 
initial approximations to Vn . For technical reasons, we are unable to use 
Uhn, U1, . ... as before. We shall instead use the intermediate stages. Assuming Uh2, 
{+U1 , V - _ }n - , n > a + 1, given, we obtain an initial approximation VIO" by 

(5.19) V`0 = ? (-i)l-1(a +1 1)VTn--inbj--9 n = a + 1,...,n* 1. 
1=1 

We then apply a single outer iteration followed by j, inner iterations to obtain 

(5.20) V n - Vlnj illc*,n+1 { ck + fin } III Vn vO'O IIIc*, n + 1 

Our first task will be to estimate IInV'1 - VoL -*,+i Letting GI= V -V'J -Mr 
1 = 0, 1, . ., * - 1, we have 

PROPOSITION 5.3. Suppose the conditions of Theorem 4.3 and Proposition 5.2 are 
satisfied and let Vo7?O be given by (5.19). Then for any c* > 0, 

a 0~~~~~~~~~+1 
V- C E jjjfl1c*fl--1III* I + C E IIIG'IIIC*,n-l 

1=0 = 

(5.21) 0+1 
+ck I I + ckAlnu0II, 

1=1 
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Proof. We have 

u+1 a+1~~G+ 
11 17 , ( I + kA !k ") 

_ 
eUhn- g - (/)Ve-^ 

= E (-1)l~ 
+ 1(I + kAYPn-l')'eUhn-' + G 

1=011 

Now, 
0+1 

=-) a+-)( !1( + k tn-1)l~nl nl 

(5.22) = -(I + e -1)- en ) 
1=0 ~ /= 

- P(1/o +/ 1 )(I + kA 7n-I eW-(I +nA-1) et- 

+ ? (il)(G +/ l)(Pn-1 + En-/ + nl 

/=co 

where t"'l, L"'7, iV"-/ are as in the proof of Theorem 4.3. Now using the identity 

(5.23) (I + kA+-, (_)1 -(I + A ) 
= (I + kAY'-)'lkA(Y-', - ?1',')(i + kS) 

and using the techniques of Section 4, 

||__(1 
( / 1){(I + kA.E' -) -(I ? Ah)}en/| 

< ck S |; ,lict-, 
1=1 

Also, as in the proof of Theorem 4.3, 

(5.25) ||| (-1)(~ I ')En '||| ck8|1u?,n. 

Now from (4.23), with 9 as in (4.26), 

a~~~~~~~~~~~~~~~I +A -(+1A 

E~~~~~~~~~~~~ I-)1 n1 + n- )Fn-l 

1=0 

= - I 1-1 (n-1)' Aa (?) - f -l) 

- k0( + k 1 1 1 -(I + kA n)-1 

-( I + kAkhk)nl}QGew(I)(t?1')A 



96 OHANNES A. KARAKASHIAN 

Hence, using (4.4), (5.23) and as in the proof of Theorem 4.3, 

(5.26) | i)Fni < ckIu&IIu,. 
__0 c(*,n?1 

Finally, using the fact that Ei+j(-1l)'( 71)g(a + t-') = 0, where a is a fixed 
scalar and g is any polynomial of degree < a, and using techniques of Theorem 4.3 
(in estimating p), 

(5.27) || = W ll < ck&Ilu0IL.y +10 n1 

Using (5.24)-(5.27) in (5.22), we get (5.21). 0 
Let 1h = (Ln)l/2 h (T,,)D/2 Q = Q(kL^) (r(z) = P(z)/Q(z)), n = wn - Uh, 

n=0,1,. .., n* - 1. Wehave: 

PROPOSITION 5.4. Suppose the eigenvalues of A satisfy Re A > 0, A 0O and that 
(3.5) holds with 8 > 0. Then there exists c8 > 0 such that for any c* > 0, 

Cajjjln+l - 'n1112*,n'l +([I - gpn]tn+l n+l) 

+ c*([I -,Mh I(kLn)l/2tn+1, (kLn)l/2tn+1) 

< ([I - ] n, ~n) + c*([I - Rh-1](kL n)1'/2 n (kL- 1)l/2 ?1) 

(5.28) kClln 1 nil 

2~~~~~~~~~~ +C hIlftw - l||*,n+1 + ||9h Uh Uh Ill*.n + 

+ ck 1(||(kLh )112Q_112tn 112 + 11( kLh ) q12Q~ 1nn 1-2 

+ 1 ( kL n )(q+ 1112Q -1/2Dn 11 
2 

1 < n < n*- 

Proof. From (5.15) we get 

QI + n] [ -n+l_ n] n+l -n) +([QI -_ ]tn+l n+l) 

(5.29) ([I n-1] n, n) _([,q n - pn 1] 
n 

) + ('q 
n 

) 

(_q(9nt n +l tn ) +2([ W n + 1 n Wn] + [ 9qn U - Un +1 ] h Dn +1_g 

Writing I + .Mn = I + rhn + (Mn - rh,), from (3.5) and (4.14) it follows that for 
some constant c(8) > 0, 

(5.30) ([I + Sh]k[n+l _ 'n] ,'n+l - +1n) n c(8)IItn?- InhI2 

Also, 

(5~~~ ~~ .31 h -n-1 = rhn 
- 

rhn-1 + (gpn_ rhn ) 
- 

( gqn-1 _n-1 1) 
(5.31) 

h 
= 

h 
,~ ( -h,~ - 

rh - rht - -kbT(I + kAYh )-( Yn - 
Yhn-1)(I + kAPn- 1 ) e. 

Hence it follows from (2.5), (2.6), (4.3), (4.13) and (4.14) that 

(5.32) h - ( n-1)(Tn)(li)/2 ||ck 1 < ck )/2, i j = 0,1. 
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Letting Q(z) = 1 + z we can show that there exist constants c2 > cl > 0 such 
that clQ(z) < Q1/2(z) < c2Q(z), Vz > 0. It then follows from a spectral argument 
that 

(5.33) [Q~(kL ) 1Q11/ (kLhn) < C2. 

Letting Q1/2 = Q1/2(kLn) and Q1 = [Q(kLn)f1, we have 
- ~~h 

( fn - Rn-1 gn tn.) 

= k(i+ji)/2-1 ((Tn)(1 j)/2(n -hn-1)( n ) 

i, j=O 

X [Q-1Q112 ] ( kUn ) (i(q - 1) + 11)/2 Q - 1/2t n 

[ P-lQ1 2 ] ( U~n ) (j(q - 1) + 1)/2 Q -1/2; n) 

It then follows from (5.32) and (5.33) that 

I ( I Rn - n-1] n n) 

< ck j(||(kLn )12Q -112;n ||+ 11 (kkL ) 4/2Q -112rn 112 

Furthermore, for any e > 0, from (4.14), 

1(_qntn+l, tn) 
- 

(9qntn, tn+ 1) 

(5.35) =qg |[hn 
- 

rh"][n 1_t]D n1 ([gPqn -rhn~tn 19 r1 _ r)| 

< ej'lln+1 - ,njj2 + 2 n+ 112 

Thus, from (5.29), (5.30), (5.34) and (5.35), 

C(8)llttn+l - n"|2 +([I _ 9Pqn]tn+ltn+l) 

< ( [I n- 
1] tnn) + ck2Ijtn+1112 

(5.36) lqnW - wn+1112 + -1 _qnUn - un+1II2} 

+ + h 

+ck jj(kLn^)1/2Q-112tn112 + 11( Un ) ql 
Q-1/2r n112 

Now with ?'P+H = (kLn)1/2tn+' and n = (kLn)1/2 n, we have from (5.15): 

([I+ gn] [n+1 _ n] ,n+1 _ fn) + ([ n] 
n 

f 
n 

) 

= ([I - l~-1](kLn-1)1/2'n (kLn-1)1/2 n) 

+ (I- fn]t, n)-([ n^-11(kLn^-1 1/2 n (kLn-1 
1~ 

+ (RhPnfn gfn + l) -(RhPnf n +1 fn ) 

((kLn)1/2[ Wn+ 1 nWn + 9ghnUn - u,;1+l]Afn+l - f ) 

Now as before, for some e(8) > 0, 
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and 

(5.38) i(St1~n Dn?1) ._ eJ(n? - jnfn+j 1n) I< 112 + 2k2I1n?1Ji2 

Furthermore, 

(-5 hg]t'1,7 fn) [I _- n-1 ](kL- -1) /2 n (kLn-1)1/2 n) = (Bfn fn) 

where 

h T h 1 rn-1](L ha/(Ta/ 

B= h - (Th-)lh(L )/2 

(Th)/ n(L 1)1 (L-1) 1/ (rn-1 ghn-TTn)112 
+ h L 1/Lh r L h / h h1-Lh ) rh ( hh 

-)1(h _J9q)(Thn)1'2 ? (Thn)1"'2(L-1 - 11T) 

+ ( Lh )h h- / 

By previously used techniques, it can be shown that JIBII < ck. Thus, 

s (Bent s t)hre E (B5[.-)cQa2e (kLhn )hiqh2fQd-in/2g yk 
i,j=o 

[VQ11~l2 ] ( kLh n)jql2Q -12fn)| 

< ck~ll~kn)11/Q-112rnll 112 ~ n)(q+1)12Q-112?n 112) 

Using the last inequality together with (5.36)-(5.38), we get (5.28). 0 

Remark. Inequality (5.28) is adapted to the stability result of Theorem 4.1, in the 

sense that the last three terms of (5.28) can be shown to match (after dividing by k) 
the term 

- rh] [I + c*kLn] n, n) 

in (4.9). The corresponding term in (4.16) is -clk(L^", nn'). Accordingly, by taking 
Q = I in the proof of Proposition 5.4, we obtain the following: 

C'&n+l - 
_ 

n|s,*n+1 +([QI- q]n+l ;n+l) 

+c ([I-Rhn](kL n)112gn~l (kL n)112tn+l 

(5.28') I - n n) + [I -h (kL -1) 1/2n (kLn-1) '/2n) 

+ ck2j1f1'n1 ~111 *,n+1 + clii - + 2n+ 

+Cl|||'u, - U 1 1 2 + ck |(kLn ) 1/2tnh| 

For our next result, we shall require the following condition 

(5.39) (Q - P)(z) > c(z + zq) Vz > 0. 

Note that from (3.10) and (3.13), this is satisfied for all IRKC methods for which 
?y > 1/2, q > 3,and yi 1/2, q = 1 or2. 
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THEOREM 5.2. Suppose the conditions of Theorem 4.3 are satisfied, (3.6) and (5.39) 
hold and that the eigenvalues of A are real positive. Let {Uh }* be the sequence of 
fully discrete approximations generated by the second variant of the base scheme. Then 
there exist constants 0 < c, e < 1 such that if 

(5.40) /n2 < cEt,7 

then 

(5.41) max IIIUh , - wII*Kn < C|IIUOIIA 
On n* 

and 

(5.42) max IIUh - U | c|IIUOIIA. 
0 <, n < 

Proof. Let e> 0 be a constant to be appropriately chosen below. Multiplying 
(5.21) and (5.28) with k-let__ and using (4.9), we get 

(1 - cketn- O) 
n 

|||IIC* n~l + 1 Ck - t Ijltn+l - tnc*n2 

+ k l-t"_ t ( -[ _? tn] tn 1tn 1) 

+ ([I -- n] (kL n)l/2'n+l, (kL n)l/2ln?1) + IIIG n lII* n 

a?l 

< (1 + ck ' IIIc*n + Ckfn2(l + Etn-_) ? Ifl -'11n- 
l=l 

+ [Ektn-1to- + EI{ ([I h 

(5.43) ~~~~~~~~+ ([I I-hn-1 ](kLa -1 )1/2g n ( kL n-1 1/2gn 

+ck 1f3n(1 + etn - ) {- -1 + III G n -1I /}12 
1=0~ ~ ~~~~~= 

+ck(1 + /n2)(i + etn O)&?'2uO U ?||2 - - rhn] [I + c*kL flDn,g'n) 

+ c~, o |("k~h )1/2 Q 112 n 
2 

+ 11 ( Un) ql2Q-112tn 112 + 11(kL n)(q+1)12Q-112tnj 12 
9 

a + I < n < n* - 1. Here c is as in (4.9), and we have assumed f3n > ck. Now, from 
(5.39), 

([I - rhn][I + c*kL]"n, n) 

= ([Q(kLh) -P(kLn)] [I + c*kL n]Q-l/2n, Q-1/2tn) 

(5.44) c 11 (kLn)112Q-112Dn 112 + 11(kL ) ql2Q-1/2n 2 

+ 11(kL n)(q+1)/2Q-1/2;n 112 
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As in the proof of Proposition 5.4, we can show that 

([I 9P ] Ad 4 +19ph ](kLh-)/D (kL-'/2 ) 
(5.45) h= 

=n Ir [ I + kL] an n. n) + l~n' 

where An satisfies 

(5.46) I4AnI| ckIII 'n IIIc*,n. 

Choosing E and /3,2 so that /,2 <1 CEtn,, < CEt* < CS for some c < 1, and sum- 
ming (5.43) over n = a + 1,.. .,N- 1 for some a + 2 < N < n*, we get, using 
(5.44), (5.45) and (5.46), 

IIINIII2*,N <- C1112 1 + ck E (c + c)III|JjIIIc*.j 
,J=o 

7+1 2 + 2 
+C - III |||(*'j + c E c*.j 

j=l j=O 
N-1 

+ck E e2IIuOII2 N= a + 2,..., n*. 
j 47+1 

Using a discrete version of Gronwall's Lemma, we get 

(5.47) Ilk' III < cI {II"iK + L IIIGj' I*4 + &2IIu01II2}, 
j=0 ~~j=O 

N= + 2,..., n*. 

Finally, since 

(5.48) { IlII*., IIIG'IIIc*,i}, o1 < c&IluSI&L. 
(5.41) and (5.42) follow from (5.47) and (5.48). 0 

Remarks. (i) For simplicity, we have assumed that { Uhnj' + are generated using 
the first variant. In fact, one can use the second variant itself by suitably changing 
the coefficients in (5.19); and, in general, any method for which (5.48) holds. 

(ii) The inequality /,l2 < cetn4a implies an O(ln k -1) amount of work in the earlier 
steps. However, it can be shown that the average work per step is independent of k 
(cf. [5]). 
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